Register and Login
Forgot  Register
Nursing World Nigeria Logo
  • Get Free Nursing News Alert

  •  
Chest-tube care: The more you know, the easier it gets part 1
Date Posted: 02/Jul/2014
 
Many nurses find chest-tube care intimidating—but it doesn’t have to be. Once you understand the basics, you can be confident when caring for patients who have chest tubes.
 
The practice of using a cannula to drain air or fluid from the pleural space dates back to antiquity. It’s one element in the trinity of life-saving medical procedures. (The others are endotracheal intubation and venous cannulation.) Hippocrates and Celsus recorded using hollow tubes to drain loculated empyemas. By the 1800s, catheters frequently were used to drain and irrigate empyematous cavities.
 
It’s all about negativity
A brief review of pulmonary anatomy and physiology helps you understand where chest tubes are placed and how they work. Chest tubes aren’t placed in the lungs but in the pleural space—a potential rather than actual space between the parietal and visceral pleurae. The parietal (outer) pleura covers the chest wall and diaphragm. It contains a small amount (about 50 mL) of serous fluid that coats the opposing surfaces, allowing the visceral and parietal pleurae to glide over each other without friction while enabling the pleural surfaces to adhere to each other. Think of two glass plates with a thin coating of water; when you place the second piece of glass atop the first, the two plates slide smoothly. But when you try to separate them, they stick together.
 
The ability to adhere creates negative pressure within the pleural space, which becomes more negative as the visceral and parietal pleurae are pulled in opposite directions during inspiration. (Picture those two glass plates.) The negative intrapleural (and thus intrapulmonary) pressure generated causes air to flow from positive (atmospheric) pressure into the lungs. Expiration increases intrapleural and intrapulmonary pressures to the point where they exceed atmospheric pressure, creating an opposite pressure differential and causing air to flow out of the lungs into the surrounding atmosphere.
 
A breach in pleural integrity creates a separation between the parietal and visceral pleurae, allowing air or fluid to fill this potential space. (Using the glass-plate analogy, the two plates have become separated). The visceral pleura collapses inward along with the lungs, while the parietal pleura recoils outward along with the chest wall.
 
Indications for chest tubes
Chest tubes are used to treat conditions that disrupt the pleural space. The body can absorb small volumes of fluid or air over time. But larger volumes limit lung expansion, causing respiratory distress. In extreme cases, a tension pneumothorax may develop. This condition occurs when injured tissue forms a one-way valve or flap, enabling air to enter the pleural space and preventing it from escaping naturally. Seen mainly with thoracic trauma and line placement, this condition rapidly progresses to respiratory insufficiency, cardiovascular collapse, and ultimately death if unrecognized and untreated. It requires immediate live-saving treatment by inserting a needle to relieve pressure (needle thoracentesis), followed by chest-tube insertion.
 
Chest tubes also may be used to prevent or mitigate postoperative complications. For example, after cardiac surgery or chest trauma, one or more chest tubes may be inserted in the mediastinum to drain blood and prevent cardiac tamponade. In addition, chest tubes can be used to instill fluids into the pleural space, such as chemotherapy drugs or sclerosing agents to treat recurrent pleural effusions (a procedure called pleurodesis). Also, blood collected from chest tubes may be used for autotransfusion. 
 
Managing pleural-space disruptions
The overall goal of chest-tube therapy is to promote lung reexpansion, restore adequate oxygenation and ventilation, and prevent complications. For treatment of pleural-space disruptions, chest-tube therapy should focus on three primary objectives:
. removing air and fluid as prompt­ly as possible
. preventing drained air and fluid from returning to the pleural space
. restoring negative pressure within the pleural space to reexpand the lung.
. Preparing for chest-tube insertion
Depending on the urgency of the situation, the practitioner may insert a chest tube at the bedside, in the operating room, or in an interventional radiology suite. When-ever possible, informed consent should be obtained; caregivers should reinforce the benefits of the procedure (for instance, easier breathing with lung expansion).
 
The practitioner administers a local anesthetic, although use of a sedative/amnesic and analgesic agent or moderate sedation should be considered for patients without artificial airways. Provide supplemental oxygen and monitor the patient as you would during any invasive procedure. After chest-tube insertion, the patient may lose several hundred milliliters of blood or transudate, potentially leading to hypotension. So make sure emergency airway equipment and patent vascular access are available.
 
Equipment to gather
Obtain a thoracotomy tray and one or more chest tubes (sometimes called thoracic catheters) of the appropriate size. Available in sizes ranging from infant to adult, chest tubes use the French sizing system—the larger the size, the larger the tube. Generally, larger tubes are used to drain blood and transudate, while smaller tubes are for air removal. Adults commonly require tube sizes between 24 and 40 French. Chest tubes also come in different configurations (curved or straight) and different materials (PVC or silicone) and are available with a heparin coating to reduce friction on insertion.
 
Set up the chest drainage unit (CDU) according to manufacturer’s instructions.
 

Source: American Nurse Today

PASS YOUR NCLEX THE FIRST TIME GUARANTEED OR YOUR MONEY BACK

Apply and Write NCLEX in Just 5 Months: Step-by-Step Guide for Nigerian Nurses

CLICK HERE TO REGISTER AND ATTEND A FREE AHA BLS ACLS CLASS HOLDING IN: Delta, Anambra, Imo, Edo, Bayelsa, Akwa Ibom, Ebonyi, Enugu, Abia and Cross River State

Share this news with friends!!!
Make a Comment or ask a question relating to this news